Skip to content

Interleaved Thinking

Introduction

Interleaved thinking allows models to reason between tool calls, enabling more sophisticated decision-making after receiving tool results. This feature helps models chain multiple tool calls with reasoning steps in between and make nuanced decisions based on intermediate results.

Important: Interleaved thinking increases token usage and response latency. Consider your budget and performance requirements when enabling this feature.

How Interleaved Thinking Works

With interleaved thinking, the model can:

  • Reason about the results of a tool call before deciding what to do next
  • Chain multiple tool calls with reasoning steps in between
  • Make more nuanced decisions based on intermediate results
  • Provide transparent reasoning for its tool selection process

Supported Models

vLLM currently supports the following interleaved thinking models:

Model Series Reasoning Parser Name
moonshotai/Kimi-K2-Thinking kimi_k2
MiniMaxAI/MiniMax-M2 minimax_m2

Example Usage

To use interleaved thinking with tool calls, specify a model that supports this feature and enable tool calls in your chat completion request. Here's an example:

Code
"""
vllm serve MiniMaxAI/MiniMax-M2 \
  --tensor-parallel-size 4 \
  --tool-call-parser minimax_m2 \
  --reasoning-parser minimax_m2 \
  --enable-auto-tool-choice
"""
import json

from openai import OpenAI

client = OpenAI(base_url="http://localhost:8000/v1",     api_key="dummy")


def get_current_weather(location: str, unit: "str"):
    """Get the current weather in a given location"""
    if unit == "celsius":
        return f"The current temperature in {location} is 22°C."
    else:
        return f"The current temperature in {location} is 72°F."


tools = [
    {
        "type": "function",
        "function": {
            "name": "get_weather",
            "description": "Get the current weather in a given     location",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "City and state, e.g.,     'San Francisco, CA'",
                    },
                    "unit": {"type": "string", "enum":     ["celsius", "fahrenheit"]},
                },
                "required": ["location", "unit"],
            },
        },
    }
]
messages = [{"role": "user", "content": "What's the weather in Fahrenheit like in San Francisco?"}]
response = client.chat.completions.create(
    model=client.models.list().data[0].id,
    messages=messages,
    tools=tools,
    tool_choice="auto",
)

tool_call = response.choices[0].message.tool_calls[0].function

messages.append(
    {
        "role": "assistant",
        "tool_calls": response.choices[0].message.tool_calls,
        "reasoning": response.choices[0].message.reasoning, # append reasoning
    }
)

# Simulate tool execution
available_tools = {"get_weather": get_current_weather}

completion_tool_calls = response.choices[0].message.tool_calls
for call in completion_tool_calls:
    tool_to_call = available_tools[call.function.name]
    args = json.loads(call.function.arguments)
    result = tool_to_call(**args)
    messages.append(
        {
            "role": "tool",
            "content": result,
            "tool_call_id": call.id,
            "name": call.function.name,
        }
    )
response_2 = client.chat.completions.create(
    model=client.models.list().data[0].id,
    messages=messages,
    tools=tools,
    tool_choice="auto",
)
print(response_2.choices[0].message.content)

This example demonstrates how to set up interleaved thinking with tool calls using a weather retrieval function. The model reasons about the tool results before generating the final response.